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Abstract:  

The Hrazdan River valley in Armenia contains Lower, Middle, and Upper Paleolithic archaeological 

sites and offers access to the Gutansar Volcanic Complex, a large and important source of obsidian. 

The sitesǯ occupants primarily acquired lithic material from this obsidian source, which is manifested 

throughout the local landscape, but its obsidian exposures, produced during a single eruptive phase, 

exhibit the same geochemical signature. This situation inspired the development of rock magnetic 

characterization as a means to recognize obsidian from different spots across the volcanic complex 

(i.e., intra-source, not inter-source, characterization). This intra-source approach was first applied to 

the Middle Palaeolithic site of Lusakert Cave 1, where the data revealed that the occupants collected 

obsidian throughout the river valley, rather than a preferred outcrop, quarrying area, or secondary 

deposit. Such a finding implied that the toolstone procurement spatially coincided with the valley 

and was embedded in subsistence activities. In this new study, the same approach to intra-source 

magnetic characterization is applied to the Lower Palaeolithic site of Nor Geghi 1 Ȃ  specifically, to 

obsidian debris dated between 440 and 335 millennia ago. The magnetic measurements show that, 

like at Lusakert Cave 1, toolstone acquisition occurred within the valley. If, as we propose, obsidian 

procurement reflects the spatial distribution of subsistence activities, it attests that archaic hominins 

at both sites and in both periods were able to effectively exploit a resource-rich riparian ecosystem. 

Consequently, this study provides an example of behaviors shared by Middle and Lower Palaeolithic 
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hominins whereby, placed within the same landscape, their resource exploitation behaviors appear 

indistinguishable. 

 

Keywords:  

Palaeolithic archaeology; Lithic raw material procurement; Provisioning strategies; Armenian 

Highlands; Obsidian sourcing; Rock magnetic characterization  

 

1. Introduction 

 Advances in geochronological, genetic, and skeletal morphological studies have pushed back 

the emergence Ȃ or, at least, an increase in the prevalence Ȃ of Neanderthal biological traits before 

Marine Isotope Stage (MIS) 8, circa 300 to 243 thousand years ago (300Ȃ243 ka), a period that has 

been regarded by some scholars as a cutoff point between Homo heidelbergensis and Neanderthals 

(Papagianni and Morse, 2013). Consider, for example, the hominin fossils at the Middle Pleistocene 

(MP) sites of Fontana Ranuccio and Visogliano in central and northeastern Italy, respectively. The 

former site dates to ׽ͶͷͲ ka ȋAscenzi and Segre, 1996; Muttoni et al., 2009), and the fossil-bearing 

stratum of the latter site dates to ׽ͶͺͲȂ440 ka (Falguères et al., 2008, 2010) Ȃ that is, both sites fall 

into MIS ͳʹ ȋ׽Ͷ͹ͺȂ424 ka). Using geometric morphometrics with high-resolution X-ray tomography, 

Zanolli et al. (2018) show that the dental remains at these sites exhibit a Neanderthal-like structural 

signal. Another example is Sima de los Huesos (SH), which lies within the Sierra de Atapuerca karstic 

cave system in Spain. The fossil-rich stratum of this site has been dated to 434 ± 30 ka (Arsuaga et 

al., 2014), and it contains > 6500 hominin fossils, including 17 skulls. Morphological analyses by 

Arsuaga et al. (2014) attest to derived Neanderthal features in the face and cranial vault. Others (e.g., 

Hublin, 2009; Stringer, 2012) have also seen the SH hominins as early members of the Neanderthal 

clade. Such interpretations have been supported by nuclear DNA analysis of two SH individuals, 

which Meyer et al. (2016:506) conclude ǲwere early Neanderthals or closely related to the ancestors 

of Neanderthalsǳ after their divergence from a common ancestor with the Denisovans. Therefore, 

even if the MP hominins from these three sites should not be regarded as Neanderthals sensu stricto, 

they share biological apomorphies with Neanderthals, attesting to the fact that particular elements 

of Neanderthal physiology existed in Europe prior to MIS 8 (> 300 ka). 

 Recognizing behavioral commonalities between such ǲpre-Neanderthalsǳ ȋDean et al., 1998) 

and later ǲclassicǳ Neanderthals has been challenging. For example, not only is the interpretation of 

SH as a case of deliberate interment with symbolic behavior controversial (e.g., Arsuaga et al., 1997; 

Bocquet-Appel and Arsuaga, 1999; Bermúdez de Castro et al., 2004; Carbonell and Mosquera, 2006; 
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Sala et al., 2015), but also the issue of intentional Neanderthal burials has yet to be laid to rest (e.g., 

Sandgathe et al., 2011; Walker et al., 2012; Rendu et al., 2014, 2016; Dibble et al., 2015; Zilhão, 2016; 

Goldberg et al., 2017). In another example, due to exceptional organic preservation at Schöningen in 

northern Germany, recent work has overturned previous interpretations of the Middle Pleistocene 

hominin behaviors preserved in this lignite mine (Conard et al., 2015). The famed ǲHorse Butchery 

Siteǳ at Schöningen, circa 340Ȃ300 ka (Richter and Krbetschek, 2015), was viewed by its excavator, 

H. Thieme, as a massive, organized hunting event and butchering spot with evidence of ritual, namely 

deliberate abandonment of eight wooden throwing spears along the shore of a lake (Thieme, 2007; 

Musil, 2007). Scientific studies, though, have yielded alternative interpretations for this site. Isotopic 

signatures of the horsesǯ teeth, which reveal varied diets and habitats, suggest that the remains reflect 

multiple small events, not a singular slaughter (Julien et al., 2015; Kuitems et al., 2015; Rivals et al., 

2015). Areas of reddened sediments, once seen as evidence of hearths, have been recognized as rich 

in iron compounds deposited as the lake receded (Stahlschmidt et al., 2015a). Sedimentological and 

paleoenvironmental studies also reveal that this site has always been underwater, so the spears were 

more likely lost than ritually put there (Stahlschmidt et al., 2015b; Urban et al., 2015). In light of the 

interpretive challenges for MP sites such as SH and Schöningen, it should be evident that scientific 

analyses Ȃ in particular, those derived from the earth sciences Ȃ have been essential for recognizing 

behavioral clues in the material culture of Neanderthals and their predecessors. 

 Another challenge for comparing archaic humansǯ behaviors is transcontinental variation in 

geographic settings. For example, the Schöningen spears might be compared to and contrasted with 

the Clacton spear (Warren, 1911; Allington-Jones, 2015), found in southeastern England in 1911 (e.g., 

the former spears are made from spruce and pine wood, whereas the latter is yew). Their find sites, 

though, are ׽͹ͲͲ km apart. The potential for geographic differences in Palaeolithic behaviors Ȃ due 

to variation in environmental and/or social contexts Ȃ have been implicated in a number of debates, 

including Neanderthalsǯ control ȋor lack thereofȌ of fire ȋDibble et al., 2018 in Western Europe vs. 

Brittingham et al., 2019 in the Armenian Highlands). There are, of course, clusters of sites that span 

different eras, thereby permitting a diachronic perspective within a shared locale. For example, the 

aforementioned SH can be compared to other sites in the Atapuerca complex (e.g., Galería, Sima del 

Elefante), that is, in the same geological setting. For instance, the only lithic artifact from SH (0.43׽ 

Ma) Ȃ an Acheulean (Mode 2) hand axe made from exotic red quartzite Ȃ can be better understood in 

contrast with the Mode 1 lithics (flakes and debitage, n=23), made from locally available chert (< 2 

km), found at the nearby site of Sima del Elefante (1.2׽Ȃ1.1 Ma; Carbonell et al., 2008).  

 The Hrazdan River valley in central Armenia is another such region, where a cluster of sites 
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spans the Lower (e.g., Hatis 1, Ghazryan, 1986; Nor Geghi 1, Adler et al., 2014), Middle (i.e., Lusakert 

Cave 1, Adler et al., 2012; Alapars 1, Malinsky-Buller et al., forthcoming), and Upper Palaeolithic (e.g., 

Solak 1, Adler et al., unpublished; see also Gasparyan and Arimura, 2014 and Sherriff et al., 2019 for 

overviews). In addition, these sites all lie a short distance ȋζ 6 km) from one of the largest and most 

important obsidian sources in the Armenian Highlands: the Gutansar Volcanic Complex (GVC). While 

obsidian-bearing lava flows and domes rarely exceed 10 km2 (Walker, 1973; Hughes and Smith, 

1993), the area of the GVC is at least seven times greater (although parts are covered by later lavas 

and alluvium). These circumstances mean that hominins primarily acquired their toolstone from a 

sizable obsidian source that is manifested in various spots on the landscape but that has a uniform 

geochemical signature due to its singular volcanic origin. This, in turn, led to the development of rock 

magnetic characterization to identify obsidian from different parts of the GVC (see Section 3; Frahm 

and Feinberg, 2013; Frahm et al., 2014). When this novel approach was applied for the first time at 

the Middle Palaeolithic site of Lusakert Cave 1 (LKT1), Frahm et al. (2016) showed that, during a cold 

phase that is provisionally dated to MIS Ͷ ȋ׽͹ͳȂ57 ka), the occupants collected toolstone within the 

adjacent valley, rather than from a preferred outcrop or quarry, presumably in the course of day-to-

day subsistence activities. This suggests toolstone acquisition was embedded in foraging practices as 

one component in the efficient exploitation of a resource-rich riparian ecosystem. 

 Here we apply the same approach to magnetic characterization to obsidian artifacts from the 

Lower Palaeolithic open-air site of Nor Geghi 1 (NG1), located only ׽͵ km south of LKT1 (Fig. 1). 

These artifacts, all small debris, were excavated from sediments that date between 440 and 335 ka. 

Our magnetic measurements and statistical tests show the same pattern as was observed at LKT1, 

indicating that the NG1 occupants also principally collected obsidian along the MP river valley and 

floodplain. Such an outcome implies that these hominins also practiced embedded procurement, as 

anticipated within a toolstone-rich landscape. If, as we propose, obsidian procurement reflects the 

spatial distribution of their subsistence activities, it attests that the NG1 occupants were as capable 

as the LKT1 occupants in exploiting the river valley. Consequently, based on these datasets, there is 

no evidence to indicate that these Lower and Middle Palaeolithic hominins had markedly different 

practices with respect to toolstone acquisition and subsistence in the Hrazdan basin. While separated 

by roughly three hundred millennia, these archaic hominins apparently had the capacities needed to 

behave in similar ways when placed within the same general landscape.  

 

2. Background: NG1 and the GVC 
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Both NG1 and the GVC have previously been described and discussed in the literature (e.g., 

Adler et al., 2012, 2014; Frahm et al., 2014, 2016; Sherriff et al., 2019), so our principal focus in the 

following sections is providing information most relevant to the study at hand. Readers interested in 

additional details are forwarded to these publications.  

 

2.1. Lower Palaeolithic NG1 

NG1 (Fig. 2a; 40.34679° N, 44.59706° E) is exposed in the Hrazdan valley wall over a length 

of 135 m. During an attempt to build a road down to the river, a bulldozer uncovered a section with 

fine-grained alluvium that contained paleosols and in situ obsidian artifacts. The fluvio-lacustrine 

sediments are bounded above and below by lava flows Ȃ specifically, basaltic trachyandesites Ȃ from 

a nearby Quaternary volcano (Adler et al., 2014; Sherriff et al., 2019). The sediments were deposited 

through a series of alluvial and damming episodes in what was once a fluctuating system of low-

energy floodplains and lakes, that was eventually capped by the final lava flow in the vicinity of this 

site ȋSherriff et alǤ, ʹͲͳͻȌǤ The capping ȋǲLava ͳǳȌ and underlying ȋǲLava ͹ǳȌ flows have been dated 

using the 40Ar/39Ar technique: 197 ± 7 and 441 ± 6 ka, respectively (Adler et al., 2014). Additionally, 

sanidine grains extracted from volcanic tephra in the topmost sedimentary unit (Unit 1) have been 

dated by 40Ar/39Ar to 308 ± 3 ka. These dates reveal that a stratigraphic unconformity exists between 

the top of the sedimentary sequence and the capping flow. Consequently, all of the artifacts contained 

within the sedimentary sequence date between ׽͵ͳͲ and ׽ͶͶͲ ka, thereby representing hominin 

behaviors between MIS ͳͳ ȋ׽ͶʹͶȂ͵͹Ͷ kaȌ and MIS ͻ ȋ׽͵͵͹Ȃ300 ka). 

 NG1 was found in 2008 and excavated until 2017 by the Hrazdan Gorge Palaeolithic Project 

(HGPP; Adler et al., 2012, 2014). Excavations between 2008 and 2013 focused on the northern half 

of the site, where obsidian artifacts attributed to MIS 9e (335Ȃ325 ka) exhibit the earliest evidence 

of the transition from Mode 2 (Acheulian) to Mode 3 (Levallois) lithic technology (Adler et al., 2014). 

Levallois cores and flakes occur not only with Acheulian bifaces but also with bifaces that have been 

recycled into Levallois cores Ȃ in the same stratigraphic layer. The findings are documented in detail 

by Adler et al. (2014). Archaeological, geochronological, and sedimentological analyses are ongoing 

for the siteǯs southern half, excavated from ʹͲͳͷ to ʹͲͳ͹, which documents earlier sediments and 

occupations, and is dominated by biface technology with an absence of Levallois or other hierarchical 

core methods. Precise dates for this half of the site are forthcoming. Given the capping and underlying 

lava flows, the southern section must, however, fall between ׽͵ͳͲ and ׽ͶͶͲ kaǤ Because sediments 

in the southern section underlie those to the north, they must be older than 335׽ ka. Therefore, the 

archaeological material contained therein is roughly contemporaneous with the MP sites discussed 
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in the Introduction. This is relevant given that the obsidian artifacts for this study come from the dry-

sieved sediment samples excavated from the southern section of NG1. 

 

2.2. The Hrazdan valley and GVC 

Since the publication of Frahm et al. (2016), the Hrazdan valley and its associated geological 

features have been re-mapped by the Pleistocene Archaeology, Geochronology, and Environment of 

the Southern Caucasus (PAGES) Project. This includes an updated map of the GVC and its obsidian-

bearing features (Fig. 3). NG1 lies on the western side of the river valley, and the highest point of the 

GVC Ȃ a scoria cone associated with the principal volcanic edifice Ȃ is visible from the site, as shown 

in Fig 2b. To the north, the Hrazdan River originates from Lake Sevan, and it drains into the Araxes 

River to the south. Sherriff et al. (2019) summarize the findings of the PAGES Project, including the 

reconstructed processes that led to the formation of this deeply incised valley. 

The obsidian-bearing features of the GVC are (i) the extensive Gutansar flow, which exhibits 

both extrusive and near-surface debris-flow aspects, (ii) the Alapars lava dome, and (iii) the Fontan 

ȋalso transliterated as ǲFantanǳȌ domeǤ Despite the different names, obsidian from these features is 

geochemically indistinguishable (Frahm et al., 2014). In addition, the trace-element composition of 

obsidian in, for example, the northernmost parts of the GVC is not measurably distinct from that in 

its southernmost parts, despite being almost 13 km apart. Furthermore, obsidian found throughout 

the GVC appears to have formed contemporaneously; however, an accurate date remains unclear as 

a result of inconsistencies between fission-track and radiometric (i.e., 40K/40Ar, 40Ar/39Ar) methods 

(Karapetian, 1972; Komarov et al., 1972; Badalian et al., 2001; Arutynunyan et al., 2007; Lebedev et 

al., 2013; Adler et al., 2014). Lebedev et al. (2013) obtained to two 40K/40Ar dates from GVC obsidian 

specimens: 480 ± 50 ka and 1.2 ± 0.5 Ma. Given the sizable uncertainty of the latter date, the former 

Ȃ 480׽ ka Ȃ is thought to be the more reasonable possibility for its true age. 

 For most obsidian-bearing flows, domes, and dikes, glassy obsidian is buried beneath either 

a pumice carapace, its weathered matrix, or subsequent lava flows. As a result, obsidian typically is 

accessible only where it protrudes toward the surface or where outcrops have been exposed due to 

erosion, slope processes, faulting, tectonics, and emplacement forces. In this regard, the GVC is like 

other obsidian sources. Its obsidian is accessible where exposed by natural (e.g., gully erosion) and 

anthropogenic (e.g., road, railway, and pipeline cuts) processes. For example, outcrops occur along a 

~1.4-km stretch of the Hrazdan valley (Fig. 4a) and in various locations across the GVC. A series of 

modern quarries (Fig. 4b) reveal the extent of this obsidian source, much of which is hidden under 

fields and meadows. Downstream sedimentary strata exposed in the valley escarpment occasionally 
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contain obsidian nodules in secondary alluvial deposits (Fig. 4c); however, these nodules can be so 

heavily damaged and cracked that they shatter in oneǯs hands. Throughout the complex, outcrops of 

high-quality obsidian are as close as the nearest gully. No doubt these exposures differed in terms of 

their precise placement during the MP. Where we can observe and sample obsidian outcrops today 

is certainly not identical to exposures during the past. The same geomorphological processes, though, 

would most likely have led to outcrops, for example, along the paleo-Hrazdan River similar to those 

along the modern river valley. Today we can observe that the magnetic properties of GVC obsidian 

exhibit continuous ranges across the complex (Frahm et al., 2014), but whether now or in the past, 

geomorphology and hominin behavior combine (i.e., collecting obsidian from where it is exposed) to 

create clusters in the magnetic data, as we discuss in the next section. 

 

3. Magnetic characterization of obsidian 

 It should be emphasized that we employ magnetic characterization in a way quite different 

than conventional geochemical obsidian sourcing (i.e., inter-source characterization) and from other 

researchers who have sought to use rock magnetism as a direct substitute for geochemical obsidian 

sourcing (see Table 1 in Frahm and Feinberg, 2013). The methods of geochemical obsidian sourcing 

Ȃ sometimes called ǲtrace-element fingerprintingǳ Ȃ seek to attribute artifacts to a specific volcanic 

flow based on their elemental compositions. Since the foundational research of Cann and Renfrew 

(1964), hundreds of studies (see Kuzman et al., 2020) have shown that artifacts can be matched to 

flows using one of several analytical techniques, including X-ray fluorescence (XRF). 

Magnetic analyses, in contrast, measure the properties of microscopic minerals that occur in 

all obsidian. Even the glassiest obsidian has sub-millimeter mineral inclusions, especially magnetite 

(Fe3O4) grains that are responsible for its black color. These magnetite grains, which exhibit magnetic 

properties, act as sensitive recorders of localized eruptive and emplacement conditions that varied 

throughout an obsidian flow (Frahm and Feinberg, 2013; Frahm et al., 2014). Obsidian experiences 

variations in temperature, viscosity, oxidation, deformation, and so on as it cools throughout a lava 

flow. These spatially variable circumstances during eruption and emplacement, as a result, influence 

the amounts, size distributions, shapes, mineralogies, and arrangements of the microscopic (titano-) 

magnetite grains within the obsidian and, consequently, the magnetic properties.  

 Variability in the magnetite assemblage of a given obsidian-bearing flow was detrimental to 

studies that sought to magnetically distinguish different sources and attribute artifacts to them. For 

example, McDougall et al. (1983) showed that three magnetic properties could differentiate the two 

obsidian sources on the island of Melos, Sta Nychia and Dhemenegaki, but the latter overlapped with 
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the other Aegean obsidian sources, rendering magnetic characterization of little archaeological use. 

Similar overlaps in subsequent studies (e.g., UrrutiaǦFucugauchi, ͳͻͻͻ in Mexico; Vásquez et alǤ, ʹ ͲͲͳ 

in the Andes; Zanella et al., 2012 in the Mediterranean) attest that magnetic properties of obsidian 

flows are considerably more variable than their glass compositions (see Frahm and Feinberg, 2013). 

As a result, attempts to source obsidian artifacts to particular volcanoes by magnetic means were, at 

best, ambiguous. Consequently, magnetic sourcing never saw widespread use. 

Our approach takes advantage of the spatially variable magnetic minerals within an obsidian 

flow and uses it to learn more about artifactsǯ origins within that specific source. Frahm and Feinberg 

(2013) observed and demonstrated the magnetic properties of obsidian are similar on small spatial 

scales (e.g., particular outcrops) and exhibit greater variation as the scale increases (e.g., the flank of 

the volcano, a transect across an obsidian-bearing flow). This phenomenon occurs for all magnetic 

parameters that have been tested (Frahm and Feinberg, 2013; Frahm et al., 2014). Simply put, the 

magnetic properties of obsidian exhibit a uniformity on the scale of centimeters and meters that is 

absent, for example, on the scale of kilometers. The emplacement and cooling conditions would, we 

expect, be largely continuous through a lava flow, so the magnetic properties of the obsidian would 

likely also exhibit continuous ranges. It is, therefore, only the combination of hominin behavior and 

landscape (i.e., acquiring obsidian where it has been exposed at the surface due to erosion, faulting, 

or other forces) that together result in clusters within artifactsǯ magnetic dataǤ  

It is worthwhile stressing that outcrop-to-outcrop magnetic variability is not necessarily so 

distinct that it will always be possible to match an artifact to an exact location in a lava flow. Different 

portions of an obsidian-bearing lava flow could have experienced conditions that created a similar 

net result for the magnetic properties. It would take lifetimes to establish whether a set of magnetic 

properties occurs exclusively in a particular cubic meter of obsidian for a flow that Karapetian et al. 

(2001) estimates to be about 5 km3 (at least 5 × 1010 specimens according to our protocols in Frahm 

et al., 2014). Consequently, our focus here is the way in which behavioral patterns on the landscape 

can be reflected within a particular assemblage of obsidian artifacts.   

 

4. Procurement models 

 Here we consider six hypotheses (based on the five in Frahm et al., 2016) that describe how 

NG1 inhabitants may have acquired local toolstone: GVC obsidian. Each of the hypotheses relates to 

the locations where procurement behaviors occurred. Binford (1979) proposed that procurement 

can be described as direct, involving special-purpose trips to a source, or embedded, occurring in the 

context of subsistence and related activities. In the real world, these procurement strategies are not 
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binary but instead exist on a continuum. For example, as hunter-gatherersǯ mobility strategies vary 

in response to the season, environment, or other local conditions, it may be that an occasional direct 

foray to acquire toolstone occurred alongside embedded strategies. We assume that visitors to NG1, 

arriving at the site from multiple directions, exhibited behavioral flexibility such that their dominant 

strategy for toolstone procurement at or near this site might not have been used elsewhere, shifting 

as they moved through their territory ranges and/or as the seasons changed.  

The series of hypothesized strategies is schematically represented in Figure 5. As described 

in the following sections, obsidian specimens were collected throughout the GVC in ways that were 

intended to replicate these hypotheses regarding toolstone procurement. One result is that the GVC 

has been magnetically characterized much more thoroughly than any other obsidian source in the 

world (n = 603 subsamples), so we have confidence in the sample sizes used to create the following 

models. Interested readers can find additional details in Frahm et al. (2016). 

 

4.1. Hypothesis #1 

 Obsidian procurement occurred on the same geographic scale as extended foraging activities 

carried out from the site, assumed to be ~10 km, resulting in acquisition from various obsidian outcrops 

and exposures scattered across the extensive Gutansar flow.  

This hypothesis is consistent with the NG1 inhabitants as foragers (sensu Binford, 1980) who 

practiced high logistical and low residential mobility. Ethnographic and energetic studies of modern 

humans commonly report maximum daily foraging radii of ~6Ȃ12 km (Kelly, 1995; Binford, 2001), 

but such distances can vary greatly by ecological context. This hypothesis ostensibly correlates with 

the exploitation of diverse resources as it suggests a large foraging area. This model was simulated 

by sampling numerous obsidian outcrops and exposures across the Gutansar flow as much as 9 km 

from NG1, that is, inside a foraging radius of 10 km from the site. The greatest coverage of the flow 

was sought for this model, so the sampled exposures include not only erosional features (e.g., gullies) 

and mass wasting locations (i.e., slope failure) but also road cuts and modern quarries. 

 

4.2. Hypothesis #2 

Obsidian procurement occurred within the palaeo-Hrazdan River valley, which resulted in the 

collection of obsidian from numerous outcrops and exposures along the river valley. 

This hypothesis is consistent with procurement during subsistence activities carried out in 

the river valley, where water as well as diverse faunal and floral resources would have been readily 

available. It is also compatible, though, with forays through the valley specifically to collect obsidian 
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when necessary. Like Hypothesis #1, it is consistent with foragers who moved residential camps to 

resource-rich areas, as we might expect given the location of NG1. To simulate obsidian acquisition 

while tracking prey through the palaeo-Hrazdan valley, cattle were followed in the modern valley for 

three days. Obsidian was collected whenever outcrops or other exposures were encountered. Thus, 

the specimens were collected from varied spots throughout the valley, not just a specific locus. If the 

NG1 inhabitants principally collected obsidian when required for tools to, for example, butcher and 

process prey moving through this valley, their procurement patterns were likely similar. It is worth 

noting that this was the supported hypothesis for LKT1 (Frahm et al., 2016). 

 

4.3. Hypothesis #3 

Obsidian procurement was targeted and focused on a preferred outcrop or outcrops.  

In contrast to Binfordǯs ethnographic research, there are accounts of toolstone procurement 

from a preferred source, sometimes (but not always) related to the material qualities (Gould, 1978; 

Gould and Saggers, 1985). Small task-focused groups were sent on short-term excursions to obtain 

toolstone, closer to Binfordǯs ȋͳͻͺͲȌ definition of collectors. Embedded procurement, however, can 

still be consistent with this hypothesis: a certain outcrop might have been targeted, but subsistence 

activities in the vicinity could be planned to coincide with the need to collect toolstone. Preferential 

collection from specific outcrops was simulated by sampling two obsidian exposures just outside the 

valley but within a foraging radius of 5 km: one is 4 km NE of NG1 (Outcrop A), and the other is 3 km 

NE (Outcrop B). A small area (~1Ȃ3 m2) was sampled at each. It should be stressed that the aim here 

is to not determine whether or not these exact outcrops were used but instead to recognize general 

patterns in magnetic data due to preferentially exploiting specific outcrops.  

 

4.4. Hypothesis #4 

Obsidian procurement was focused on conspicuous landmarks on the landscape, such as lava 

domes. 

 This hypothesis is consistent with Molyneauxǯs ȋʹͲͲʹȌ proposal that conspicuous features, 

such as Devils Tower and Obsidian Cliff in the American West, played important roles in wayfinding 

and cognitive mapping, affecting the movements of people and toolstone. Specifically, he suggested 

that ǲDevils Tower exhibits a centripetal effect, as it drewǳ in travelers while ǲObsidian Cliff exhibits 

a powerful centrifugal effect, as people carried its raw material across vast regions of central North 

Americaǳ ȋMolyneaux, 2002:136). This idea led Frahm (2012) to offer that a conspicuous obsidian-

bearing landscape feature could simultaneously draw in travelers (centripetal effect) and serve as a 
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source of toolstone that is distributed by visitors (centrifugal effect). This model was simulated by 

sampling two obsidian-bearing GVC lava domes: Fontan and Alapars. The Fontan dome, as it appears 

today, is ~100 m across and ~20 m tall, but it has a complex history regarding its MP formation and 

modern exposure through quarrying. Fontan was clearly an attractive location in the past given that, 

in 2011, the HGPP discovered a Middle Palaeolithic site, dated to MIS 5, immediately adjacent to this 

dome (Malinsky-Buller et al., forthcoming). Alapars is wider (~1 km) and taller (~80 m), and lithic 

artifacts were also encountered while sampling this dome. 

 

4.5. Hypothesis #5 

Obsidian procurement �as targeted and in�ol�ed ǲindustrialǳ quarr�ing ȋeǤgǤǡ digging a series 

of pits in a given area to access obsidian where it occurs at or near the surface).  

Away from the valley, there are locations scattered across the GVC where sizable obsidian-

bearing facies reach the surface (or nearly do so). Such locations would provide an opportunity for 

toolstone quarrying akin to that reported in the Levant (e.g., Barkai et al., 2006; Barkai and Gopher, 

2009; Gopher and Barkai, 2014). The Mount Pua quarry complex, for example, consists of hundreds 

of pits across ~90 ha, following a subsurface chert layer (Gopher and Barkai, 2014). This hypothesis 

is consistent with the occurrence of specialized quarrying sites, at which large-scale extraction and 

initial working transpired prior to its transport. This model was simulated using an anthropogenic 

exposure of near-surface obsidian in a modern quarry, which processed the pumiceous material for 

concrete production. An immense amount of obsidian reaches the surface over a sizable area (~62 

ha) in this location, ~5 km E of NG1. Specimens were collected along an 80-m exposure (Fig. 4b) to 

mimic a series of extraction pits. Like Hypothesis #3, our goal is not to determine if this exact spot 

was exploited by the NG1 inhabitants. Instead, the focus of this model is establishing basic patterns 

in magnetic properties due to exploiting obsidian from a circumscribed area.  

 

4.6. Hypothesis #6 

Obsidian procurement involved exploiting cobbles in alluvial deposits along the river.  

Although there are abundant opportunities to collect obsidian from outcrops and exposures 

across the GVC, it is also accessible in alluvial deposits in the valley, where small cobbles have been 

transported and rounded by the palaeo-Hrazdan River (but these same forces have also introduced 

fractures that limit the cobblesǯ utility as toolstone). This hypothesis is consistent with exploitation 

of chert cobbles from secondary deposits at Palaeolithic sites in France (e.g., La Chapelle-aux-Saints, 

Demars, 1990) and elsewhere (e.g., Egypt; Vermeersch et al. 1990, 1995). Procurement from an 
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alluvial deposit of GVC obsidian along the palaeo-Hrazdan was simulated by sampling the only such 

deposit that we have located (Fig. 4c), a short distance upstream from NG1. 

 

5. Materials and methods 

 This section discusses the collection, selection, and preparation of NG1 artifacts for the study 

at hand as well as the methods of their geochemical and magnetic analyses. 

 

5.1. Excavation methods at NG1 

Adler et al. (2014) report on the HGPP excavation methods at NG1 but focus on the work in 

the northern part of the site between 2008 and 2013. The same methods were followed between 

2014 and 2017 in the southern part. Larger obsidian artifacts ȋη ʹ5 mm); stratigraphic boundaries; 

and sediment samples for sieving as well as the chronological and geoarchaeological research were 

recorded in three dimensions using two Leica total stations. The excavated sediment was recorded 

spatially as samples ~15Ȃ20 liters in volume. All of the sediment samples were dry-sieved through a 

0.5-cm mesh and picked in order to recover smaller lithic artifacts, which were sorted into three size 

classes: maximum diameters of η ʹ5 mm, 24Ȃ15 mm, and ζ ͳͶ mm. 

 

5.2. Geochemical analyses by pXRF 

 A sample of 500 obsidian fragments were drawn from the small debris (< 25 mm) recovered 

from the excavated sediments. To determine the volcanic sources of these fragments, each one was 

analyzed using pXRF in the Yale University Archaeological Laboratories. Specifically, we used an 

Olympus Vanta VMR instrument, which is equipped with a Rh anode, a 4-W X-ray tube, and a large-

area (40 mm2) silicon drift detector with an excellent spectral resolution ȋ140 د eV) at high X-ray 

count rates ȋذ ͳͲͲ,ͲͲͲ X-ray counts/sec). When the instrument is operated in the ǲGeoChemǳ mode, 

its tube current and voltage change in combination with built-in beam filters as a means to better 

fluoresce the heavier and lighter parts of the periodic table of elements. Each measurement took 25 

seconds: 15 seconds for the heavier elements at ͶͲ kV and ׽͹Ͳ ɊA, and then just moments later, 10 

seconds for the lighter elements at ͳͲ kV and ׽ͻͲ ɊA. Each obsidian fragment was analyzed twice 

with repositioning between measurements to avoid any morphological effects.  

The data were corrected using Olympusǯ fundamental parameters ȋFPȌ implementation as a 

means to adjust for various phenomena that affect the relationships between raw X-ray intensities 

and elemental concentrations (e.g., fluorescent and absorption edges, mass attenuation coefficients, 

Coster-Kronig transition probabilities, Rayleigh and Compton cross sections). Accuracy was checked 
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with three well-characterized obsidian specimens: GBOR01 obsidian (Little Glass Buttes, Oregon; a 

reference material from the University of Missouriǯs Research Reactor), RGM-1/2 (Glass Mountain, 

California; a standard from the United States Geological Survey), and NIST 278 (Newberry Crater, 

Oregon; a standard from the United States National Institute of Standards and Technology). Table 1 

summarizes previously published analyses for these obsidians (see Frahm and Brody, 2019) and lists 

our pXRF measurements, which agree with the means from the literature.  

Small lithic size classes are often excluded from pXRF-based obsidian sourcing (e.g., Golitko, 

2011; Sheppard et al., 2011; Goodale et al., 2012; Kellett et al., 2013; Galipaud et al., 2014; Coffman 

and Rasic, 2015; Millhauser et al., 2015) because they are often regarded as ǲtoo smallǳ for XRF (e.g., 

Eerkens et al., 2002, 2007; Davis et al., 2011; Shackley, 2011, 2012; Ferguson, 2012; Freund, 2014; 

Escola et al., 2016). Here, however, we follow protocols that we have published (Frahm, 2016) and 

applied (Frahm et al., 2016): the use of ratios between calibrated, corrected, and quantitative ǲmid-

Zǳ elemental data to cancel out systematic error due to artifactsǯ small sizes (i.e., obsidian artifacts as 

small as a few millimeters in diameter). In particular, Frahm et al. (2016) used a scatterplot of Sr/Rb 

vs. Zr/Rb (i.e., Sr vs. Zr normalized to Rb) for source identifications of LKT1 obsidian debris, and we 

follow the same procedure in this study for the analyzed artifacts from NG1. 

 

5.3. Magnetic analyses by VSM 

 From the sourced obsidian fragments, a sample of 100 specimens was randomly drawn and 

screened for magnetic testing using three criteria. First, any specimens for magnetic analysis had to 

originate from the GVC rather than another obsidian source. Second, for reasons that are detailed by 

Frahm et al. (2014:169Ȃ170), an abundance of hematite (Fe2O3) in a specimen can confound efforts 

to magnetically characterize magnetite (Fe3O4) grains within the obsidian. Our solution has been to 

exclude hematite-rich specimens from the datasets. Previously we have employed a hysteresis loop 

shape parameter ȋɐhys) to remove hematite-rich obsidian (i.e., positive values indicate hematite-rich 

obsidian, whereas negative values indicate magnetite-rich obsidian). A faster procedure is simply to 

exclude specimens that exhibit the red color of hematite. Third, the specimens had to be a suitable 

size. A specimen had to be small enough to fit into the Princeton Measurements MicroMag vibrating 

sample magnetometer (VSM; Fig. 6) but large enough to be measured quickly (i.e., larger specimens 

have more magnetic material and, hence, can be measured more rapidly)Ǥ Specimens ׽ͺȂ14 mm in 

maximum dimension are ideal. Applying these selection criteria resulted in 61 artifacts, which were 

cleaned with tap water in an ultrasonic cleaner and air-dried. Mass was recorded with high precision 

(to the nearest 0.1 mg) to normalize magnetic measurements to an artifactǯs mass. 
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 The four measured magnetic properties, which are known as hysteresis parameters, primarily 

reflect innate characteristics of the obsidian artifactsǯ magnetite inclusions ȋeǤgǤ, their sizes, shapes, 

compositions, amounts, orientations). Hysteresis parameters are found by measuring a specimenǯs 

induced magnetization when a strong magnetic field is applied and varies in strength (up to 1.5 T in 

this instance). Our measurements were taken at room temperature with a Princeton Measurements 

VSM. A hysteresis loop and a backfield curve were acquired for each artifact along two orthogonal 

axes, often the longest and shortest appropriate for the VSM. The four hysteresis parameters were 

measured (Fig. 7): saturation magnetization (Ms), saturation remanence (Mr), coercivity (Bc), and 

coercivity of remanence (Bcr). As discussed by Frahm et al. (2014:168), Ms, which is measured when 

the applied magnetic field is at its strongest, reflects the concentration of magnetic material within a 

particular specimen. Mr, which is measured after the applied magnetic field has been removed, is the 

highest possible permanent magnetization. It primarily reflects the magnetic material concentration 

and mean grain size, but factors such as grain alignments and interactions can also affect it. Bc is the 

applied field strength when a specimenǯs induced magnetization returns to zero, and it is inversely 

correlated to grain size. Bcr is the field strength needed to remagnetize half of a specimenǯs magnetic 

minerals so that Mr equals zero, and it too is inversely related to mean grain size. Ratios between the 

parameters are also useful. The remanence (Mr/Ms) and coercivity ratios (Bcr/Bc) reflect grain size: 

smaller magnetic grains tend to yield higher Mr/Ms and lower Bcr/Bc values.   

 The two orthogonal measurements for each artifact were intended to minimize the effects of 

anisotropy (i.e., directional effects if any flow bands exist in the obsidian). These two measurements 

were averaged in order to calculate bulk mean values for each artifact. It is also worth noting that a 

Mr/Ms ratio of 0.5 is, in theory, the maximum value for randomly oriented, uniaxial, non-interacting 

magnetic grains. Greater Mr/Ms ratios would imply the presence of strong, non-random alignments 

of mineral inclusions, including the aligned minerals that compose flow bands. None of the artifactsǯ 

ratios have values more than 0.25, which indicates that, for the artifacts in question, flow banding is 

negligible. Three parameters (Ms, Mr, Bc) were measured using a hysteresis loop ȋ׽Ͷ minȌ, while the 

fourth (Bcr) was measured with a backfield curve ȋ׽ͳͳ minȌǤ Including optimizing the VSM between 

each artifact and its reorientation, the total instrument time was ׽ͶͲ hoursǤ 

 

5.4. Other types of magnetic measurements 

 Our earlier studies (e.g., Frahm and Feinberg, 2013; Frahm et al., 2014) measured low-field 

magnetic susceptibility ȋɖȌ using a KLY-2 KappaBridge susceptibility bridge and MAGNON variable-

frequency susceptibility meter. For a relatively simple assemblage of magnetic minerals, ɖ functions 
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as a proxy for the amount of magnetic material in a specimen. Given that Ms can also serve as such a 

proxy, we concluded that measuring ɖ was not necessary in light of the added time and equipment 

requirements. Our pilot work also included natural remanent magnetization (NRM), measured using 

a 2G Enterprises 755 cryogenic, superconducting rock magnetometer inside a shielded room with a 

background magnetic field < 100 nT (Frahm and Feinberg, 2013). In obsidian, NRM is mainly due to 

the thermal remanent magnetization (TRM), which was acquired as it cooled. This, too, was deemed 

unnecessary for the purposes of intra-source characterization. Lastly, small geological specimens of 

obsidian were measured using a Quantum Designs MPMS (magnetic property measurement system) 

cryogenic susceptometer (Frahm, unpublished). These measurements, which take several hours per 

specimen, allow magnetic mineral identifications using low-temperature crystallographic transitions 

(e.g., the Verwey transition at 110׽ K in magnetite) and particle size characterizations, particularly 

for ultra-fine superparamagnetic grains. Hysteresis parameters, however, can provide some of this 

information (Fig. 8) without the considerable time investment required.  

 

5.5. Comparative GVC magnetic data 

 The NGͳ artifactsǯ magnetic measurements were compared to the GVC datasets discussed by 

Frahm et al. (2016:81Ȃ83). In short, obsidian specimens were collected in ways intended to replicate 

different procurement patterns, as discussed in Section 4. For example, to mimic collection across a 

large portion of the Gutansar flow, the specimens and their data reflect the broadest coverage of the 

full lava flow. To simulate obsidian acquisition from a preferred outcrop location, 20 specimens from 

two individual outcrops were collected and measured. Specimens were also collected from a larger 

obsidian exposure (which served as a proxy for a quarrying area) and from two lava domes (Fontan 

and Alapars). To mimic obsidian procurement through the valley while hunting׽ fauna or gathering 

flora, we followed grazing cattle along the river for three days. Specimens were collected whenever 

obsidian outcrops or exposures were happened upon, meaning that multiple outcrops and exposures 

are represented in this population and its corresponding dataset. Lastly, to simulate collection from 

an alluvial deposit along the paleo-Hrazdan River, obsidian cobbles were sampled from a lag deposit 

located near NG1. In summary, all of these geological specimens were collected from throughout this 

volcanic complex specifically with magnetic characterization in mind. 

 

6. Geochemical and magnetic results 

Figure 9 is a scatterplot of Sr/Rb vs. Zr/Rb for the 500 NG1 artifacts analyzed using pXRF as 

well as the corresponding data from likely geological sources, previously collected and published by 
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Frahm et al. (2016). The elemental data show that all but four of these obsidian fragments (n = 496, 

99.2%) originated from the GVC. One came from Kamakar (one of the three Tsaghkunyats sources, 

  .km N of NG1), while three geochemically match Hatis (~12 km SE of NG1) 25׽

The magnetic data for NG1 artifacts were compared to eight geological datasets: exposures 

encountered along the Hrazdan River valley, a secondary alluvial deposit, two outcrops, a quarrying 

area, the Fontan and Alapars lava domes, and the Gutansar flow. We employed quadratic canonical 

discriminant function analysis (JMP software from SAS) using the four hysteresis parameters (Ms, Mr, 

Bc, and Bcr) and the two ratios (Mr/Ms and Bcr/Bc) as variables and using five datasets (the outcrops, 

lava domes, and quarry) as the discrete training groups. Figure 10 plots the outcomes from applying 

the first two functions to the artifacts and all eight geological datasets. These first two discriminant 

functions account for 69% and 22%, respectively, of the variability, for a total of 91%. A simple visual 

examination of the scatterplots, graphing these first two discriminant functions, reveals the greatest 

affinity in magntic measurements between the NG1 artifacts and Hrazdan valley specimens, but the 

similitude between these two populations can be shown more rigorously. 

Figs. 11 and 12 are box-percentile plots (Esty and Banfield, 2003) for the first and second 

discriminant functions, respectively. Such plots Ȃ a variant of the traditional box-and-whisker plot Ȃ 

illustrate the distribution of the magnetic data. These shapes extend to the maxima and minima, and 

their width at any given point is proportional to the percentile. The median is demarcated by a solid 

line at the widest point, while the first and third quartiles are denoted by dashed lines that are half 

the width of the median line. These plots again reveal the affinity between the NG1 artifacts and the 

Hrazdan valley specimens. Using one-way ANOVA testing (Table 2), especially for the first function, 

establishes that the artifacts and Hrazdan specimens exhibit the greatest similarity, followed by the 

specimens collected from across the entire Gutansar lava flow. This similarity is expected given that 

the obsidian outcrops along the Hrazdan valley derive from the Gutansar flow. 

 

7. Interpretation and discussion 

 The obsidian sources identified among the small debris at LKT1 and NG1 (Fig. 1) are highly 

similar. First, in terms of the sample sizes of artifacts that we tested by pXRF, the difference between 

the six non-GVC obsidian artifacts identified at LKT1 and the four non-GVC obsidian artifacts at NG1 

is not statistically significantly different (two-tailed z-score test, p = 0.688). Second, the non-GVC 

obsidian artifacts at both sites originate from Hatis volcano and one or two of the Tsaghkunyats 

sources. The three Tsaghkunyats sources are geochemically distinct (Fig. 9) lava domes at a relatively 

high elevation ȋ׽ʹͶͲͲ mȌ within the same mountain rangeǤ Consequently, as reported by Badalyan 
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et al. (2004), secondary deposits, sometimes containing obsidian intermingled from more than one 

dome, can be found at lower elevations ȋ׽ʹͲͲͲ mȌǤ For example, the so-called Hankavan secondary 

deposit (located near a village of the same name) contains obsidian cobbles carried down from both 

the Damlik and Ttvakar domes. Given the existence of such secondary deposits, it is not necessarily 

behaviorally meaningful which Tsaghkunyats source occurs within an assemblage. For this reason, 

Badalyan et al. (2004) argue that the Tsaghkunyats obsidian sources might best be combined when 

making archaeological comparisons. Following their line of reasoning, one cannot conclude that the 

sources identified in the LKT1 and NG1 small debris are meaningfully different. 

 Our statistical analyses (Figs. 10 to 12 and Table 2) reveal that the tested NG1 artifacts have 

magnetic properties most similar to the geological obsidian specimens we collected throughout the 

Hrazdan river valley. That is, obsidian was not acquired from only one outcrop, based on the spread 

of the magnetic data. Instead, the dispersion of our magnetic measurements establish that multiple 

outcrops and exposures were exploited throughout the river valley by the NG1 occupants. This is the 

same outcome as at LKT1: collection throughout the valley (Frahm et al., 2016). We interpret this 

result as support for Hypothesis #2: toolstone procurement principally occurred in the river valley, 

resulting in obsidian that derived from various outcrops and exposures along the ancient river and 

floodplain.  As described in Section 4.2, the comparative sample utilized to test this hypothesis was 

collected over the course of three days while tracking ǲpreyǳ ȋi.e., grazing cattle) through the modern 

river valley. We expect that, if the NG1 inhabitants largely acquired obsidian while moving through 

the palaeo-Hrazdan valley, then bounded by Lower Pleistocene volcanic deposits from the GVC and 

Mt. Arailer (see Sherriff et al., 2019, especially their Figure 12), the procurement patterns likely were 

generally similar to our own movements. Hence, like at LKT1 (Frahm et al., 2016), we argue that the 

obsidian procurement taskscape (Ingold, 1993) coincided with the palaeo-Hrazdan valley. This result 

is also consistent with expectations that, within a landscape rich in toolstone resources, embedded 

procurement will be the dominant strategy (Binford, 1979; Duke and Steele, 2010). The procurement 

of obsidian throughout the ancient valley, we propose, likely also reflects the spatial distribution of 

subsistence activities. This, in turn, implies that adequate food existed in the immediate surroundings 

and that the NG1 occupants were able to exploit this rich and diverse ecosystem. 

Our geochemical (inter-source) and magnetic (intra-source) results are complementary. In 

particular, like at LKT1, obsidian from Hatis is rare among the NG1 small debris Ȃ only three artifacts 

out of 500 (0.6%). Hatis, however, is not only 12׽ km from NG1 but also immediately southeast of 

the GVC (Fig. 3). Nevertheless, hominins did not routinely transport obsidian from this volcano to 

NG1. The GVC obsidian outcrops most distant from this site are ~9 km away, and our magnetic data 



 
18 

suggest that these and other outcrops outside the palaeo-Hrazdan valley were rarely transported to 

this location. Consequently, the proximity of Hatis volcano but the scarcity of its obsidian reinforce 

our interpretation of the magnetic data as indicative of valley-centric procurement. 

 Differences in the depositional and taphonomic effects on the LKT1 and NG1 lithics must be 

considered as a potential complication in directly comparing their results. From LKT1, Frahm et al. 

(2016) analyzed the small debris from three sediment samples in one of the most lithic-rich layers, 

Unit 6, with thin ash spreads (remnants of combustion, probably hearth features) and horizontally-

bedded silty-clay sediments. The ash lenses of hearths indicate little post-depositional disturbance, 

but nevertheless, the obsidian debris in these sediment samples still reflects a time-averaged signal. 

In contrast, the lithic artifacts at NG1 appear to reflect repeated hominin activities conducted on the 

fairly stable surfaces of the palaeo-Hrazdan floodplain. Consequently, for both LKT1 and NG1, the 

magnetically measured artifacts reflect time-averaged signals, rather than individual events, and, in 

turn, represent behavioral variations over, perhaps, multiple generations.  

It has been proposed that, at least in southwestern France, that chert outcrop quarrying was 

rare due to the difficulties of extricating chert from veins or nodule-bearing limestone and that, as a 

result, chert was primarily acquired from alluvial deposits along streams and rivers (Demars, 1982; 

Bordes, 1984; Turq, 1988, 1989). In contrast to chert, obsidian is more brittle and less hard (5Ȃ6 on 

Mohǯs hardness scale compared to 6.5Ȃ7 for chert). Hence, not only is obsidian easier to extract from 

outcrops, but also it is much more readily damaged by battering and frost action as cobbles found in 

secondary deposits. Observations at the studied alluvial deposit (Fig. 4c), the only MP deposit that 

we have located along the course of the paleo-Hrazdan River, attests that such cobbles were unlikely 

toolstone resources during the Lower Palaeolithic. Even if the small cobbles (i.e., the very largest are 

 ͳȂ5 cm range) were suited to some forms of lithic reduction, they still׽ ͳͲ cm, but most fall in the׽

tend to be too damaged by frost and/or bashing to function reliably as toolstone. This observation is 

consistent with the magnetic data, on the basis of which we hold that alluvial deposits were not the 

principal sources of obsidian for the visitors to NG1. One could argue that exploiting obsidian from 

multiple alluvial deposits, each of which drew obsidian from different suites of outcrops along the 

river, may yield a distribution of magnetic values not easily distinguished from the valley-collected 

dataset. To produce such a pattern, alluvial deposits would need to either (1) lie in varied locations 

throughout the valley to capture obsidian from different outcrops or (2) exist well downstream in a 

location where obsidian from different outcrops could be well mixed (although cobbles further down 

the valley should be even smaller and more damaged). In the former situation, exploiting obsidian 

from various alluvial deposits yield behaviors similar to those for Hypothesis #2. That is, toolstone 
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collection from numerous obsidian exposures in the valley Ȃ whether primary outcrops or alluvial 

deposits Ȃ can be similar not only magnetically but also behaviorally. 

The prior findings from LKT1 (Frahm et al., 2016) and our new results from NG1 document 

an apparent continuity in obsidian procurement behaviors, spanning from ׽ͶͶͲȂ335 ka at the latter 

site to ׽͹ͳȂ57 ka at the former. That is, there is no evidence between these studies to suggest that 

Lower and Middle Palaeolithic hominins had considerably different practices related to toolstone 

acquisition within the paleo-Hrazdan river basin. During these two periods at least, there is no clear 

relationship between procurement behaviors and (potentially) different hominin populations. This 

outcome might be, in part, a consequence of the GVC landscape, across which excellent obsidian is 

virtually ubiquitous. Hominins on such a landscape could carry out subsistence activities largely free 

of concerns regarding where and when they would next find toolstone to restock.  

 

8. Conclusions 

 Recent studies are increasingly pushing back the appearance of Neanderthal biological traits 

prior to MIS ͺ ȋ׽͵ͲͲȂʹͶ͵ kaȌ to as far back as MIS ͳʹ ȋ׽Ͷ͹ͺȂ424 ka). That is, particular elements of 

their physiology existed in Europe before MIS 8. Identifying behavioral commonalities between such 

pre-Neanderthals and later Neanderthals has been more challenging, in part due to the geographic 

differences among sites distributed across vast distances. Serendipitously, the Hrazdan River valley 

in central Armenia has a cluster of Lower, Middle, and Upper Paleolithic sites as well as access to the 

GVC, one of the largest and most important obsidian sources within the Armenian Highlands. The 

occupants of these sites primarily acquired toolstone from the GVC, which is manifested in numerous 

locations scattered across the landscape, but these obsidian exposures have a uniform geochemical 

signature. This situation inspired the development of magnetic characterization to identify obsidian 

from different GVC locations (Frahm and Feinberg, 2013; Frahm et al., 2014).  

 This magnetic approach was applied for the first time to the Middle Palaeolithic site of LKT1, 

specifically to small obsidian debris from a stratum provisionally dated to MIS Ͷ ȋ׽͹ͳȂ57 ka; Frahm 

et al., 2016). Frahm et al. (2016) demonstrate it was not the case that one or two specific obsidian 

outcrops were preferred by the LKT1 occupants. Nor did they collect their obsidian from quarrying 

areas, from locations across the entire volcanic complex, or from alluvial deposits. The data instead 

support a hypothesis that the occupants principally collected obsidian from outcrops and exposures 

scattered through the Hrazdan valley in its Late Pleistocene form, reflecting the scale of their day-to-

day subsistence activities. Their taskscape for toolstone procurement apparently coincides with the 

valley. This result suggests that toolstone acquisition was embedded within foraging practices as a 
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component in the efficient exploitation of a resource-rich river valley ecosystem. 

 In the present study, the same approach to magnetic characterization is applied to the Lower 

Palaeolithic site of NG1, in particular to similar small debris from sediments that date between 440׽ 

and 335׽ ka. Statistical analyses reveal that these artifacts, like those from LKT1, exhibit properties 

most similar to the obsidian specimens we collected through the modern Hrazdan River valley. We 

interpret this as support for Hypothesis #2: toolstone procurement principally occurred within the 

MP valley and its floodplain, resulting in obsidian from a variety of primary outcrops and exposures. 

Consequently, like at LKT1, the taskscape of obsidian procurement coincided with the valley as it 

existed at the time. Such an outcome is consistent with the expectation that, within such a toolstone-

rich landscape, embedded procurement is the dominant strategy for replenishing stocks of lithic raw 

materials. If, as we propose, the procurement of obsidian throughout the MP valley and floodplain 

reflects the spatial distribution of subsistence activities, it attests that the NG1 occupants were 

similarly capable of exploiting this resource-rich riparian ecosystem. 

 Additionally, for both LKT1 and NG1, the small debris was analyzed by pXRF. At both sites, 

the debris not from the GVC geochemically matched either Hatis volcano or one of the Tsaghkunyats 

obsidian sources, meaning that the geographic origins of these artifacts are not distinct. There are no 

far-flung obsidian sources represented exclusively at one site or the other. In addition, the fractions 

of debris from the non-GVC sources are not statistically different. Consequently, based on this lithic 

class, movements over the wider landscape are also indistinguishable.  

 Considering the results of our chemical and magnetic analysis of obsidian debris from NG1 in 

light of the same datasets from LKT1 (Frahm et al., 2016), there is no evidence to suggest that Lower 

and Middle Palaeolithic hominins had markedly different practices related to toolstone acquisition 

within the paleo-Hrazdan basin. That is, there appears to be no clear relationship between hominin 

populations and procurement behaviors. This might not be true in all contexts. Indeed, such a result 

might be a product of the GVC landscape, where hominins could carry out subsistence activities free 

of concerns regarding where and when they could locate new toolstone. Our findings, though, imply 

that the hominin occupants of the sites, separated by approximately 300 millennia, had the requisite 

capacities to efficiently procure toolstone in the context of other foraging activities. Thus, we provide 

a new example of behaviors shared among Middle and Lower Palaeolithic hominins, such that, when 

placed in the same general landscape, their practices were indistinguishable. The result is crucial for 

studies that seek, for example, to model population dynamics or explain population replacements in 

terms of archaic humansǯ disparate capacities to exploit the landscapeǤ 
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Figure captions 

Fig. 1. Map of Armenia showing obsidian sources (circles), select source complexes (dashed lines), 

and the Lower Palaeolithic site of Nor Geghi 1 (black square). 

Fig. 2. (a) Photograph of NG1, looking toward the west from the eastern side of the Hrazdan valley, 

and the associated geomorphological features. (b) Photograph of the Hrazdan valley, looking north-

east from NG1, showing the visibility of the Gutansar cone. Photographs by the authors. 
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Fig. 3. Redrawn version of the geological map for the Gutansar volcanic complex from Sherriff et al. 

(2019), largely based on that of Karapetian and Karapetian (1971). 

Fig. 4. (a) Example of a GVC obsidian outcrop along the Hrazdan valley. (b) A 80-m exposure of near-

surface obsidian in a pumice/perlite quarry, which we sampled to replicate extraction pits following 

a specific geological facies. Our friend and colleague, the late Sergei Karapetian (Chief Researcher in 

the Volcanology Department of Armeniaǯs Institute of Geological SciencesȌ is picturedǤ (c) An alluvial 

obsidian deposit along the Hrazdan River valley, upstream from NG1. The Ingalls handpick is 31 cm 

in length. Photographs by the authors.  

Fig. 5. Sketches of the Hrazdan valley and the GVC to illustrate the different procurement strategies 

that we hypothesize the NG1 occupants might have used. The relative dimensions of the floodplain, 

valley, and other features are exaggerated and not to scale. The straight lines that connect the site to 

the obsidian exposures are neither literal paths nor intended to imply direct excursions.  

Fig. 6. (a) The vibrating sample magnetometer (VSM) used in this study. (b) A close-up photograph 

of an obsidian artifact held by a plastic sample holder between the two electromagnetic pole pieces 

and field sensors. Photographs by the authors. 

Fig. 7. A generic hysteresis loop after processing (i.e., after the paramagnetic contribution from the 

glass has been subtracted), illustrating the relationships among the applied magnetic field (B); the 

specimenǯs magnetic moment ȋMȌ in response; and the measurement of remanence (Mr), saturation 

magnetization (Ms), coercivity (Bc), and coercivity of remanence (Bcr). 

Fig. 8. (a) Day plot (Bcr/Bc vs. Mr/Ms) of the NG1 obsidian artifacts with magnetic domain boundaries 

(dotted blue lines) and magnetite mixing curves (solid green lines) from Dunlop (2002). All artifacts 

fall in the pseudo-single domain (PSD) region of the plot, not the single domain (SD) or multi-domain 

(MD) regions. Magnetite grains exhibit PSD behavior in the 0.1 to 20 μm size range. (b) NG1 artifact 

data (Bc vs. Mr/Ms) with the compositional lines for magnetite (TM0) and titanomagnetite (TM60) 

based on calculations by Wang and Van der Voo (2004).  

Fig. 9. A scatterplot of Sr/Rb vs. Zr/Rb (i.e., Sr vs. Zr normalized to Rb) for the geological obsidian 

specimens and the NG1 small debris in this study. This scatterplot is directly comparable to Figure 

7a in Frahm et al. (2016:84). 

Fig. 10. Scatterplots of the first and second discriminant functions applied to the magnetic data for 

the different obsidian sampling areas.  
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Fig. 11. A box-percentile plot (Esty and Banfield, 2003) of the first discriminant function applied to 

the magnetic data for the different obsidian sampling areas.  

Fig. 12. A box-percentile plot (Esty and Banfield, 2003) of the second discriminant function applied 

to the magnetic data for the different obsidian sampling areas.  
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